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Abstract-A simple thermocouple model is used in this paper to generate data by simulating the imposition 
of a triangular heat flux history on a one-dimensional domain. A general inverse heat conduction (IHC) 
analysis computer program is developed and used to estimate the heat flux history based on the generated 
data. The results show that the effect of the thermocouple’s time constant is to diminish the magnitude of 

the predicted heat gux history and dispiace its dist~bution in time. 

1. INTRODUCTION 

INVERSE methods have gained popularity over the last 
20 years in many fields [l-4] inciuding heat transfer 
[S-9]. In the heat transfer arena, these methodologies 
are used extensively to provide estimates of the surface 
heat transfer based on temperature measurements 
from the body’s interior. This contrasts the ‘notmat 
task of the heat transfer analyst which is to provide 
predictions of a body’s internal temperature given the 
external variation in surface heat flux. For this reason, 
these techniques are referred to as inverse heat con- 
duction (IHC) methods. 

Estimation of surface heat fluxes by application of 
inverse methodologies is gaining acceptance as a bona 
j2e technique for obtaining transient heat flux data. 
Although any available temperature sensor may be 
employed to provide the internal tem~rature history 
of the body, the thermocouple is the most commonly 
used. When the heat flux is steady, or varying only 
slowly in time, application of the IHC analysis yields 
accurate values for the unknown Rux. However, if the 
heat flux is changing rapidIy, even in a non-periodic 
manner, the effect of inherent thermocouple sensor 
dynamics is to corrupt the temperature history in a 
deterministic way. If this data is then used to estimate 
the unknown surface heat flux, errors in both mag- 
nitude and timing of the heat flux history will result. 

A thermocouple is a junction of two dissimilar 
metals which produces an electromotive force (EMF) 
which is proportional to the temperature of the junc- 
tion. Such a device accurately represents its own tem- 
perature quite well, and its ability to portray the tran- 
sient temperature of its surroundings depends on two 
significant factors. First, as the body’s temperature 
changes, there must be heat transfer between the body 
and the sensor, in order for the sensor to follow the 
body’s temperature. In order to achieve accurate read- 
ings, then, the contact resistance between the body 
and the sensor must be minimized. 

Secondly, the thermocouple junction inherently has 
a finite volume, and this volume’s thermal mass must 
change temperature as rapidly as possible to mirror 
the change in the body’s temperature. Therefore, for a 
given thermocouple material, the mass of the junction 
should be minimized in order to attain a rapid ther- 
mocouple response. Attention to these details in a 
thermocouple’s construction and installation will 
minimize the thermocouple’s dynamics; however, 
they cannot be eliminated completely. 

This scenario begs the question : ‘What are the effects 
of inherent thermocoupie sensor dynamics on esti- 
mates of transient heat fluxes if IHC methods are 
employed?’ This is the central question of this paper 
and has relevance in physical situations where tem- 
peratures and fluxes are changing rapidly, such as 
quenching or ablative heating. 

What folfows in this paper is a description of the 
current implementation of the IHC method, which is 
a generalization of the function specification method 
of Beck [5, IO]. Next, a simple thermocouple model is 
presented which is used to generate data from ther- 
mocouples with different time constants. Finally, the 
central question is addressed by applying the IHC 
method to the data generated from the thermocouple 
model and examining the results. A suggestion for 
com~nsating the IHC algorithm for the ther- 
mocoupIe’s time constant is made before the con- 
clusion of this paper. 

2. CURRENT IHC ALGORITHM 

The IHC algorithm developed for this study is a 
generalization of the function specification method of 
Beck [5, lo]. It was desired that the method be as 
general as possible, so that further modifications 
could be made to extend its applicability to a wider 
class of problems. The major aspect of the current 
method is the segregation of the thermal model and 
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NOMENCLATURE 

A surface area [m2] 
[A], [B] coefficient matrices 

aij sensitivity of variable i on parameter J’ 

CP thermocouple bead constant pressure 
specific heat [kJ kg- ’ K- ‘1 

f’ arbitrary function [dimensional] 

f arbitrary function [dimensionless] 
h heat transfer coefficient [w m- 

K-Kl- ’ I I k 
. . 

thermal conductivity [w m- I 

L reference length [m] 
n number of observations 
P model parameter 

4 +* heat flux [w m-2] 
& reference heat flux [w m- ‘1 
“‘ 9 dimensionless heat flux, q+“/& 

r number of future time steps 
s number of sensors 
S sum of squares of deviations 
t+ time [s] 

t dimensionless time, t+a/L’ 
T+ temperature [K] 
Tl thermocouple bead temperature [K] 
Tz thermocouple environment temperature 

Kl 
T dimensionless temperature, 

(T+ - Td/&(L/k) 
V volume [m’] 
wij weighting factor (equation (9)) 
X+ distance coordinate [m] 
x dimensionless distance, x+/L 
; )I model-computed value of y 

v’i experimentally observed value of y. 

Greek symbols 
a material thermal diffusivity [m’s_ ‘1 

P thermocouple bead density [kg m-‘1 
T+ time constant [s] 
T dimensionless time constant, r’z/L*. 

the non-linear estimation procedures in the algorithm. 
In this way, extensions to higher dimensions or 
inclusion of effects such as solidification~a&e made 
by modifying only the thermal model. A general 
description of the current IHC algorithm will be given, 
followed by a validation of the implementation’s 
method. 

aT d’T 
x=dx’ (5) 

$(O, t) = - g =f:(t')ML =f~(t) W 
0.I 

4”(l,t) = -g =/:(t+)/4Lr =f~(r) (6b) 
1.1 

2.1. Description of the algorithm 
The thermal model employed in the current IHC 

algorithm is restricted to one-dimensional Cartesian 
systems with constant thermal properties. The govern- 
ing differential equation for such a system is 

1 aT+ a2T+ --=- 
a at+ ax+ 2 

(1) 

subject to the boundary conditions 

q+“(O,t+) = -kg.,+ =f:(t+) (24 

q+“(L,t+) = -kg ‘,+ =f:(t+) (2b) 

and the initial condition 

T+(x+,O) = f ;(x+). (3) 

These relations can be cast into non-dimensional 
form by defining the following dimensionless par- 
ameters : 

T(x, 0) = (f: (x’ ) - Tr,,)I4L(LIk) = f3 (x) . (7) 

In the IHC algorithm, the initial condition f3(x) in 
equation (7), which is often a constant value, must be 
known a priori. However, determination of the heat 
flux boundary conditions at one or both ends of the 
domain (equation (6)) is the objective of the IHC 
method. One or both of these fluxes can be obtained 
by the current algorithm, if sufficient data are avail- 
able. This will be discussed below in detail. 

In order to provide the predictions of the unknown 
heat flux, a non-linear estimation method is necessary. 
The method incorporated in the current algorithm is 
an iterative least-squares differential correction algo- 
rithm [ll, 121. The objective function for the mini- 
mization is the sum of the squares of the difference 
between a model-produced estimate 9 and its cor- 
responding measured value resulting from a physical 
experiment f. That is, a system model is available 
which yields estimates of the measured values given 
current values of the unknown parameters 

t = t+a/L2, x = x+/L 
ji = F(P, , P,, . , . , P,, tJ. (8) 

4” = q+“/& T = (T+ - T&&(L;k). (4) 
Here the P’s represent the unknown parameters in the 
system model. The objective function to be minimized 

Then equations (l)-(3) become can be expressed as 
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s = f i: (Ei-yi)wij(,‘, -j,) (9) 
j-Ii-l 

where n corresponds to the number of measurements 
that are to be matched. Also, w,~ is a weighting factor 
which becomes necessary when parameters to be esti- 
mated have different statistical variance. 

It should be noted that, in order to minimize equa- 
tion (9) with respect to the unknown parameters, the 
sensitivity matrix embodying the dependence of the 
system model on the unknown parameters must be 
determined. This sensitivity matrix is the set of first 
derivatives of the system model with respect to the 
unknown parameters. In the non-linear estimation 
algorithm employed here, this is not done explicitly. 
Rather, the evaluation of the partial derivatives is 
performed numerically. Thus, the sensitivity co- 
efficients are computed from a central difference 
approximation as 

F(P I,..., Pj+sPj )...) P,,ti) 

a_fi -F(P,,. . . , P,--6Pj,. . ., P,,tJ 

2SPj 

(10) 

The minimization algorithm used in the current 
IHC method is perfectly general in that any model 
may be used to produce the estimates. The’syStem 
model can be any combination of mathematical oper- 
ations required to produce estimates of the measured 
values. The required sensitivity matrix is computed 
numerically and the potential complexity of the sys- 
tem model itself poses no limitation on the class of 
thermal models which may be analyzed. 

In the specific case of the estimation of unknown 
surface heat fluxes, the system model is the differential 
equation (5) and the unknown parameters are the 
heat fluxes in equation (6). The measurements jjj in 
equation (9) become the discrete thermocouple read- 
ings TP This problem is, however, significantly differ- 
ent from the classical parameter estimation problem, 
since the ‘parameters’ to be estimated are functions of 
time. This is what Beck et al. [9, IO], call fbwtion 
estimation. This can be handled in the context of the 
current estimation procedure in at least three ways (p. 
37 of ref. [IO]) : (1) consider each time step a new 
problem with no knowledge of the future, (2) consider 
each time step a new problem, but realize knowledge 
of a few future time steps, or (3) consider the whole 
time domain. The first of these is the classic method 
of Stoltz, which suffers from numerical instability for 
small time steps. The last option is computationally 
inefficient, requiring rather large computer memory 
to solve a modest problem. The second approach is 
the one implemented in the current IHC algorithm 
and is essentially the sequential function specification 
method espoused by Beck [5, lo]. 

To apply the IHC method, the partial differential 
equation (5) must be discretized into an algebraic 
form. This discretization may be done in many ways 

(finite difference, finite volume, finite element, 
implicit, explicit, Crank-Nicolson, Galerkin. etc.) but 
may be represented algebraically as a matrix equation 

[A](?++‘) = [B]fT’}f{@j (11) 

where the superscript ‘i’ is the current time t,, ‘if 1’ is 
the next time ri+ ,, and the superscript ‘j’ may be either 
‘i’ , ‘i+ I’, or 'i+ y according to whether explicit, 
implicit, or Crank-Nicolson time discretization is 
employed. The vector {@} contains the unknown heat 
fluxes, and for a one-dimensional analysis can contain 
at most two values. 

In the current IHC thermal model, a finite volume 
spatial discretization is employed, and a fully implicit 
time discretization is used. The implicit form of the 
temporal discretization was found by experience to be 
less sensitive to numerical instability (see Section 2.2 
below). Thus, in equation (1 I), the matrix [A] has a 
tridiagonal form. [B] is a diagonal matrix. and the 
index ‘j’ is equal to ‘i+ 1’. 

The spatial domain must be subdivided to compute 
the temperature distribution at each time step. The 
spatial domain may, if desired, be subdivided into 
nodes of unequal volume, although equal increments 
are normally chosen. The number of computation 
points is arbitrary, but must be chosen such that a 
smooth and reasonable spatial temperature variation 
results. The only strict requirement is that the actual 
location of the sensor(s) used must correspond exactly 
to the location of the analogous computational node. 

In the sequential function specification procedure, 
a functional form for the temporal variation in surface 
heat flux is assumed. The current IHC implementation 
follows the choice by Beck et al. [lo] of the simplest 
possible function. the constant function. That is, over 
each computational time interval Ar. the surface heat 
flux 4’ is assumed to remain constant. Then, that 
constant value of q’ is temporarily assumed to remain 
constant over the next r future time steps. Future 
time steps are included in the procedure to provide a 
stabilizing effect on the predictions (p. 125 of ref. [lo]). 
The value of r is also an input variable into the IHC 
algorithm and is easily changed. The number of 
measurements to be ‘matched’ in the sense of equation 
(9) is iz = r x s, where s is the number of sensors 
employed. 

Use of multiple sensors is recommended by Beck 
(pp. 230-232 of ref. [IO]). However, difficulties arise 
with multiple sensors in a one-dimensional problem 
estimating a single heat flux. This is because the 
unknown heat flux will have the highest sensitivity to 
the sensor closest to that surface. This will require the 
use of a weighting scheme, so that data from those 
sensors more remote from the surface will be heeded. 

On the other hand, if heat fluxes on borh ends of a 
one-dimensional domain are to be estimated. at least 
two sensors ntu.st be employed (one corresponding to 
each surface). Otherwise, an infinite combination of 
heat fluxes at the two surfaces could account for the 
change in temperature of the single sensor. What 
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FIG. I. Triangular heat flux. 

results is the flux at the surface which is closest to the 
sensor will have the highest sensitivity to the measure- 
ment. Consequently, that flux will be estimated, and 
the second surface will be estimated as adiabatic. Cor- 
rect estimates for the two unknown fluxes will not be 
obtained. 

The current IHC has been verified by comparison 
to the triangular heat tIux test case presented in ref. 
[lo]. The results of this verification are presented in 
the following section. 

2.2. Algorithm uertjisatian 
In order to demonstrate the soundness of the cur- 

rent method, it is applied to an academic case pre- 
sented by Beck et al. (p. 169 of ref. [IO]). The case 
involves the imposition of a triangular heat flux on 
one end of a domain while the other end remains 
insulated. The triangular heat flux is depicted in 
Fig. 1. 

Calculations are performed in dimensionless form. 
Data were generated for a sensor located at the insu- 
lated boundary at x+ = L (X = 1). The time interval 
between the data points was 0.015 (dimensionless 
time). This temperature history was then input into 
the IHC algorithm to obtain the estimate of the heat 
flux history at the surface. 

The results of the IHC prediction are shown in Fig. 
2 using r = 4 future time steps per estimate. These 
results were obtained using the implicit time dis- 

G - t = 4 Cuiurr l%me Sfmpa 
- T = 0. e,=m 

j-025 ,il,‘,‘,“‘,“‘,“‘,‘1 
=z * -0.40 0.00 0.40 0.80 1.20 1.60 

Time (d~me~ionless) 

FIG. 2. IHC results using implicit formulation and r = 4 FIG. 4. IHC results using implicit formulation and r = 8 
future time steps. future time steps. 
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FIG. 3. IHC results using Crank-Nicolson formulation and 
r = 4 future time steps. 

cretization as described in the previous section. For 
comparison, the results of the IHC aIgorithm using a 
Crank-Nicolson time discretization are shown in Fig. 
3. These results were also obtained using r = 4 future 
time steps per estimate. For both estimations, the time 
step for the simulation in the thermal portion of the 
IHC algorithm was identical to the time step in the 
data (0.015). Notice that, although the results from 
the implicit formulation in Fig. 2 are not completely 
smooth, the corresponding results from use of the 
Crank-Nicolson discretization in Fig. 3 are highly 
erratic once the time rate of change of the heat flux 
dcj”/dt has reversed sign. For this reason, the fully 
implicit formulation was embraced and adopted for 
all subsequent computations. 

The lack of smoothness in the results of Fig. 2 was 
not satisfactory. Hence subsequent re-estimates were 
made to determine the number of future time steps 
required to yield a smooth result. The IHC algorithm 
was re-executed using values of r = 6 and 8 future 
time steps. The results for I = 6 (not shown) still have 
a small amount of oscillation in the results after the 
change in sign of the heat flux time derivative. 
However, the results for r = 8 future time steps, 
shown in Fig. 4, shows that the results for this case 
are satisfactorily smooth. The time step again equalled 
that of the data (0.015), however, in Fig. 4 and in 

2 j 
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Table 1. Calculated heat fluxes at certain times for the tri- 
angular heat flux example using the function specification 

method 

r=8 r=4 
t Exact Current method (ref. [lo]) 

0.15 0.15 0.141 - 
0.51 0.51 0.502 0.5038 
0.57 0.51 0.559 0.5347 
0.60 0.60 0.578 - 
0.63 0.57 0.578 0.5327 
0.69 0.51 0.533 0.5018 
1.05 0.15 0.157 - 

subsequent jgures not all computational points are 
indicated with symbols. 

Table 1 shows a comparison of a few specific data 
points from the estimation procedure to the cor- 
responding exact values. Also shown in Table 1 are 
the values reported in ref. [lo] (Table 5.5, p. 183) for 
their estimates for this case. The comparison of the 
quality of the results from the current method to those 
from ref. [IO] is highly favorable. 

3. THERMOCOUPLE SENSOR DYNAMICS 

As mentioned previously, two major factors require 
that a thermocouple sensor’s indicated tenfpetature 
lag behind the actual temperature the sensor is 
attempting to indicate. These factors are (1) contact 
resistance between the sensor and the body and (2) 
the thermal mass of the thermocouple junction. In 
this section a brief description of the simplest ther- 
mocouple sensor model will be given, along with a 
demonstration of this model’s effect on the indicated 
temperature. 

3.1. The simplest model 
The simplest model for a thermocouple involves 

incorporation of the two factors mentioned above- 
contact resistance and thermal mass. Such a model 
neglects other possibly important factors such as heat 
loss and temperature gradients along the leads. 

The thermocouple model is shown in Fig. 5. The 
thermal resistance is depicted as R,, = l/hA, where h is 
the heat transfer coefficient between the thermocouple 
bead and the surrounding medium and A the surface 
area of the bead. In situations of interest in the present 
investigation, this h would not be a convection 
coefficient but would represent the effect of an air gap 

FIG. 5. Thermocouple model and parameters. 

or some otherwise imperfect thermal contact between 
the thermocouple and the surrounding solid medium. 

The assumptions of a homogeneous thermocouple 
bead with constant thermal properties and uniform 
contact resistance are made. With the further assump- 
tion of negligible internal temperature gradients 
within the bead, an energy balance leads to the differ- 
ential equation governing the temperature of the bead 
as a function of time as 

dT,C q+ hA 
= -(TZ(t+)-T,+) 

dt’=pc, pcpv 

= rli_(T:(r+)-T:) (12) 

which is subject to the initial condition 

T:(o) = T,C. 

In dimensionless form these equations become 

- = !(T,(t)-T,) dT, 
dt T 

and 

(13) 

(14) 

Tb@) = m - ~r,rY4W/~) = To. W) 

The two factors controlling the thermocouple’s 
response are seen to combine as a ratio into a single 
parameter T+. This parameter is often referred to as 
the time constanf and has units of time (s). Two 
important observations regarding the nature of equa- 
tion (14) are (1) the equation is intractable at present 
since the temperature of the surrounding medium 
T,(t) is an unspecified function of time and (2) the 
parameter T, although assumed constant in this 
formulation, may in fact change with time and/or 
temperature. 

3.2. Efect of 5 on sensor temperature 
A solution for the thermocouple’s response can be 

computed if the temperature history of the sur- 
rounding medium r,,(t) in equation (14) is known. A 
parametric investigation was undertaken to determine 
the effect of the time constant T on the sensor’s indi- 
cated temperature. 

A one-dimensional domain insulated at X+ = L 
(X = 1) was simulated numerically using the tri- 
angular heat flux shown in Fig. 1 as the boundary 
condition at X+ = 0 (x = 0). A thermocouple located 
at x = 1 was simulated by including the sensor dynam- 
ics depicted by equation (14) and using the value of 
the temperature of the body at x = 1 as the time 
varying T,. The temperature of the body was deter- 
mined from a Crank-Nicolson numerical procedure. 
The temperature of the sensor was determined at each 
time step using a fully implicit numerical differencing 
scheme. 
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FIG. 6. Effect of r on sensor temperature. 

Figure 6 shows the result of the computations. In 
the figure, the case T = 0 corresponds to the case 
of no effect of sensor dynamics (perfect thermal con- 
tact or zero sensor heat capacity) and is thus the 
true temperature of the body. As the time constant is 
increased, the sensor lags progressively behind the 
true temperature. 

These computed thermocouple responses were 
saved for input into the IHC algorithm to determine 
the effect of 7 on the predicted surface heat flux. The 
results of this exercise, being the primary purpose of 
this paper, are presented in the next section. 

4. EFFECT OF THERMOCOUPLE DYNAMICS 

ON IHC PREDICTIONS 

To determine the effect of the thermocouple sensor 
dynamics on the IHC predictions, the results of the 
previous section’s simulation of a sensor located at 
x+ = L were analyzed using the IHC algorithm 
described previously. The IHC analysis provides esti- 
mates of both the surface temperature and the surface 
heat flux. These results will be presented, followed by 
a study of the effect of the rate of heat flux change 
d$‘/dr on the IHC predictions. 

4. I. Surface temperature 
The results of the IHC prediction of surface tem- 

perature for several different values of T are shown in 
Fig. 7. Also shown in the figure are the actual values 

F -0.25 -f I 
-0140 

I I , I I I , I 8 I I 1 1 1 I 1 1 1 1 1 ’ 

iz 
0.00 0.40 0.80 1.20 1.60 
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FIG. 7. Effect of T on IHC surface temperature predictions. 
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FIG. 8. Effect of 5 on IHC surface heat flus predictions. 

of surface temperature produced from the Crank- 
Nicolson simulation. The case oft = 0, corresponding 
to the case of no sensor dynamics or perfect readings, 
is seen to be faithfully reproduced by the IHC results 
in Fig. 7. 

As expected, increasing the parameter r results in 
increasing error in the estimated surface temperatures. 
The nature of this error is a combination of a pro- 
gressing shift in time of the response and a damping 
in the magnitude. These factors result from the cum- 
mutative effects of the lagging sensor response. When 
the time constant is degraded to 7 = 0.35, the IHC 
algorithm fails to predict the ‘overshoot’ in the surface 
temperature resulting from the triangular heat flux in 
Fig. 1. 

4.2. Surface heat&s 
The primary function of the IHC analysis is to 

estimate the surface heat flux based on the internal 
sensor temperature. The results of the IHC pre- 
dictions of surface heat flux for several different sensor 

time constants T are shown in Fig. 8. Again, the case 
of T = 0 corresponds to the estimate for a perfect 
sensor, and its error (depicted in Fig. 4j is indicative 
of the amount of error inherent in the IHC algorithm. 

In Fig. 8, increasing values of T produce increased 
damping and lagging of the surface heat flux predic- 
tions. This is analogous to damping and lagging of 
the predictions of surface temperature presented 
above. The lagging of the occurrence of the peak in 
the curve is seen to correspond approximately to the 
value of the time constant for the sensor. The mag- 
nitude of the peak flux predicted by the IHC degrades 
rapidly with the sensor’s time constant 5. 

4.3. Effect of rate of change of heat flux on the IHC 
predictions 

The previous sections have considered the effects of 
using progressively inferior thermocouples to measure 
the temperature of a slab subjected to an identical 
heat flux history. In this section, the more physically 
realistic case is considered, that being a study of the 
effect of progressively steeper heat fux gradients 
d$‘/dt on a thermocouple with a fixed time constant. 

To achieve this comparison, a thermocouple with a 
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FIG. 9. Effect of heat flux gradient on IHC predictions with 
T = 0.10. 

fixed parameter of r = 0.10 was selected. Such a ther- 
mocouple has a noticeable, but not catastrophic, effect 
on the IHC predictions seen in Figs. 7 and 8. The 
thermocouple’s response was simulated, as described 
previously, being excited by a triangular heat flux 
similar to that in Fig. 1. On each successive simulation, 
the time at which the heat flux reaches its maximum 
value (Q,,,,, = 0.6) was decreased until, for the last 
case, r(Qm,,) = 0.0 which corresponds to an instan- 
taneous change in surface heat flux. 

The results of the IHC predictions of surface heat 
flux are shown in Fig. 9. For all six cases show:, the 
time at which the heat flux began increasing Gas fixed 
at t = 0, and the time at which the heat flux returned 
to zero was fixed at t = 1.2. The magnitude of the 
maximum heat flux was constant at Qmax = 0.6. As 
the time at which Qmal is reached is decreased, the 
rate of increase of the heat flux, dg”/dt, increases. 
Initially, when t(QmaX) = 0.60, dg”/dt = 1.0, and when 
t(Q,,J is decreased to zero, dg”/dt becomes infinite. 

In Fig. 9, it is seen that as the rate dg”/dt increases, 
the heat flux predicted by the IHC algorithm is dimin- 
ished in magnitude and delayed in time. The amount 
of the effect seen in Fig. 9 which is due to the ther- 
mocouple sensor dynamics can be ascertained by com- 
parison with the results of the same analysis with a 
perfect temperature sensor. The results of this analysis 
are seen in Fig. 10. In this case, as d$‘/dt increases, the 
peak values of the heat flux are actually overestimated, 
due to the inclusion of the future data information in 
the estimation procedure. Also, the time of occurrence 
of the peak values is closer to the actual value, but 
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FIG. IO. Effect of heat flux gradient on IHC predictions with 
r = 0.0. 

still is biased due to the inclusion of future time step 
information in the IHC prediction. Lastly, as the heat 
flux decreases from its maximum value, an irregularity 
in the shape of the triangle becomes apparent as dq”/dt 
is increased. 

The essential details of Figs. 9 and 10 are tabulated 
in Table 2. There a comparison of the magnitude 
(Q”,.) and time of occurrence (t(Q_J) of the 
maximum heat flux for the perfect and imperfect ther- 
mocouple sensors is made. As d#‘/dr increases, the 
error in the predicted time of occurrence increases for 
both cases. In the perfect sensor case, this error is 
indicative of the inherent error in the IHC algorithm 
for the combination of the number of future time steps 
used (r = 8) and the time step in the data (Ar = 0.015). 
In the imperfect sensor, the error in the predicted time 
of occurrence is increased beyond that for the perfect 
sensor in all but the first case. The predicted mag- 
nitude of the maximum heat flux Qmar actually 
increases with increasing dg”/dr for the perfect sensor 
case, due to the use of future time step information. 
In the case of the imperfect sensor, the predicted mag- 
nitude of QmaX is steadily deteriorated with increasing 
d4”ldt. 

5. PROSCRIPTION FOR COMPENSATION OF 

THE IHC ALGORITHM FOR 

THERMOCOUPLE DYNAMICS 

The deterministic effects of thermocouple sensor 
dynamics on predictions by IHC methodology were 

Table 2. Comparison of IHC predictions for increasing heat flux gradients for perfect 
(r = 0.0) and imperfect (T = 0.10) sensors 

Actual T = 0.0 5 = 0.10 
d$‘ldr Q-. r(Qm,,) max Q [(Qm,,) “,,,I Q l(Qmol) 

1.0 0.60 0.60 0.5798 0.615 0.5278 0.615 
2.0 0.60 0.30 0.5876 0.345 0.5108 0.435 
4.0 0.60 0.15 0.6027 0.210 0.4941 0.330 
6.0 0.60 0.10 0.6112 0.165 0.4872 0.300 

12.0 0.60 0.05 0.6144 0.135 0.4800 0.270 
,s; 0.60 0.00 0.6084 0.105 0.4716 0.255 
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demonstrated in the previous section. It would be IHC predictions from an imperfect sensor have also 
highly desirable, if possible, to account for the sensor’s been illustrated. With a sensor of non-zero r, as drj”/dr 
dynamics in the IHC method. is increased, the times of occurrence and magnitudes 

This can be done if the thermocouple can be of the peak values of heat fluxes are delayed and 
modeled as the simplest case presented, i.e. the ther- diminished. 
mocouple’s dynamics can be characterized by a single 
value r. If the value of T is known a priori, and is truly 
constant, then it is a trivia1 matter to include in the 
thermal model of the IHC algorithm a separate mod- 
ule to reflect this. 

However, in the more general case, a suitable value 
Of T is nof known. As mentioned before, this parameter 
depends on the in situ characte~stics of the ther- 
mocouple bead and its contact condition with the 
surrounding body. The value of T may even change 
during the experiment under consideration, owing to 
the (possibly) changing contact condition. 

If the value of 7 is not known, it can, under certain 
conditions, be estimated in parallel with the surface 
heat flux. This will require inclusion of the thermo- 
couple dynamics in the IHC thermal model, leaving 
T as an unknown function of time. The algorithm 

will now require more data, however, as the data from 
a single sensor will not be sufficient to determine two 
parameters at each time step. This would be analogous 
to the case mentioned earlier of attempting to deter- 
mine the heat flux from two surfaces using data from 
a single sensor. The internally computeff sensitivity 
coefficients will be competing for information from a 
single sensor’s data. The parameter which is most 
dependent on the measured temperature will prevail, 
and the other parameter will be estimated as zero. If 
data from a second sensor is available, and it can be 
assumed that the two sensors hate similar dynamics, 
then the algorithm can be modified to predict both 
the unknown surface heat flux and the unknown value 

Of T. 

6. CONCLUSIONS 

The effect of thermocouple sensor dynamics on pre- 
dictions from IHC methods has been demonstrated. 
As one would expect, the ‘slower’ the sensor is, the 
poorer will be the results of the IHC method. The 
effect of increasing heat flux gradient dd”/df on the 
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EFFET DE LA DYNAMIQUE DUN CAPTEUR THERMOCOUPLE SUR LA 
PREDICTION DU FLUX THERMIQUE OBTENUE PAR LA METHODE INVERSE 

R&tun&I_In modele simple de the~~ouple est utilisi pour simmer i’histoire successive i l’imposition, 
sur un domaine monodimensionnel, d’un flux thermique variant en triangle. Un programme d’informatique 
d’analyse inverse de conduction thermique est develop@ pour estimer I’bvolution du flux apres cette 
imposition. Les resultats montrent que I’effet de la constante du thermocouple est de diminuer l’intensite 

du flux estime et de dtcaler sa distribution dam !e temps. 
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DER EINFLUSS DES DYNAMISCHEN VERHALTENS VON THERMOELEMENTEN 
AUF DIE ERMITTLUNG DER OBERFLjiCHENWARMESTROMDICHTE DURCH 

DIE ANALYSE DER INVERSEN WARMELEITUNG 

Zusammenfassung-In dieser Arbeit wird ein einfaches Model1 eines Thermoelementes verwendet, urn in 
einem eindimensionalen Gebiet die zeitliche Entwicklung der WIrmestr6me zu berechnen. Es wird ein 
allgemeingiiltiges Rechenprogamm fir die inverse WLrmeleitung entwickelt und dazu verwendet, aufgrund 
der generierten Daten die zeitliche Entwicklung des Wlrmestroms zu berechnen. Die Ergebnisse zeigen, 
da!3 infolge der Zeitkonstanten des Thermoelementes die Wlrmestr6me betragsm8Sig zu klein und im 

iibrigen zeitversetzt berechnet werden. 

BJUUHWE ~HHAMWYECKO~ XAPAICTEP&iCTHKH TEPMOl-IAPbt HA Ol-IPEJ$EJIEHHE 
TEMOBOrO IIOTOKA HA I-IOBEPXHOCM C HClIOJIb3OBAHWEM METOAOB 

PEUIEHHJI 06PATHbIX -9 TEMOIIPOBO~OCTlcl 

Amomms-Hcnom3yercn upoman ~0~en.b rep~ouapbl nnn nonygeanr nammx WCM MOJlC3lQoEW 

mu nruxoxemin Ha ormoh~ep~yro 06~~3~13 ~unonoro nmora, ~acupe~e~~em~oro eo apcMems II0 qcyro- 
mlloii CXCMC. m noaxamomemm ~ennonoro noToua no pe3yxbTaTar.4 n3Mepewm paqdomia 
nporpahwa pacnemioro c-ma, ~cnonamxan ua pcuteum o6pa7-m~ 3anas ~~moupommocr~. Sucnew 
iid 3xcncpm4em 1101;83bmae~. -i-r0 wm5me n~crom~~oil epchfem 3armosam3i B crnax~b(uIpIH n me- 

uemm BewpIIHbI Termonoro noro1c8 80 spehcerra. 


