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Abstract—A simple thermocouple model is used in this paper to generate data by simulating the imposition

of a triangular heat flux history on a one-dimensional domain. A general inverse heat conduction (IHC)

analysis computer program is developed and used to estimate the heat flux history based on the generated

data. The results show that the effect of the thermocouple’s time constant is to diminish the magnitude of
the predicted heat flux history and displace its distribution in time.

1. INTRODUCTION

Inverse methods have gained popularity over the last
20 years in many fields [1-4] including heat transfer
[5-9]. In the heat transfer arena, these methodologies
are used extensively to provide estimates of the surface
heat transfer based on temperature measurements
from the body’s interior. This contrasts the ‘normal’
task of the heat transfer analyst which is to provide
predictions of a body’s internal temperature given the
external variation in surface heat flux. For this reason,
these techniques are referred to as inverse heat con-
duction (THC) methods.

Estimation of surface heat fluxes by application of
inverse methodologies is gaining acceptance as a bona
fide technique for obtaining transient heat flux data.
Although any available temperature sensor may be
employed to provide the internal temperature history
of the body, the thermocouple is the most commonly
used. When the heat flux is steady, or varying only
slowly in time, application of the IHC analysis yields
accurate values for the unknown flux. However, if the
heat flux is changing rapidly, even in a non-periodic
manner, the effect of inherent thermocouple sensor
dynamics is to corrupt the temperature history in a
deterministic way. If this data is then used to estimate
the unknown surface heat flux, errors in both mag-
nitude and timing of the heat flux history will result.

A thermocouple is a junction of two dissimilar
metals which produces an electromotive force (EMF)
which is proportional to the temperature of the junc-
tion. Such a device accurately represents its own tem-
perature quite well, and its ability to portray the tran-
sient temperature of its surroundings depends on two
significant factors. First, as the body’s temperature
changes, there must be heat transfer between the body
and the sensor, in order for the sensor to follow the
body’s temperature. In order to achieve accurate read-
ings, then, the contact resistance between the body
and the sensor must be minimized.

Secondly, the thermocouple junction inherently has
a finite volume, and this volume’s thermal mass must
change temperature as rapidly as possible to mirror
the change in the body's temperature. Therefore, for a
given thermocouple material, the mass of the junction
should be minimized in order to attain a rapid ther-
mocouple response. Attention to these details in a
thermocouple’s construction and instaliation will
minimize the thermocouple’s dynamics; however,
they cannot be eliminated completely.

This scenario begs the question : ‘What are the effects
of inherent thermocouple sensor dynamics on esti-
mates of transient heat fluxes if IHC methods are
employed? This is the central question of this paper
and has relevance in physical situations where tem-
peratures and fluxes are changing rapidly, such as
quenching or ablative heating.

What follows in this paper is a description of the
current implementation of the [HC method. which is
a generalization of the function specification method
of Beck {5, 10]. Next, a simple thermocouple model is
presented which is used to generate data from ther-
mocouples with different time constants. Finally, the
central question is addressed by applying the IHC
method to the data generated from the thermocouple
model and examining the results. A suggestion for
compensating the THC algorithm for the ther-
mocouple’s time constant is made before the con-
clusion of this paper.

2. CURRENT IHC ALGORITHM

The IHC algorithm developed for this study is a
generalization of the function specification method of
Beck [5, 10]. It was desired that the method be as
general as possible, so that further modifications
could be made to extend its applicability to a wider
class of problems. The major aspect of the current
method is the segregation of the thermal model and
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A surface area [m?]

[4], [B) coeflicient matrices

sensitivity of variable / on parameter j
thermocouple bead constant pressure

specific heat [kJ kg=' K]

ST arbitrary function [dimensional}

S arbitrary function [dimensionless)

h  heat transfer coefficient [W m~2K~']
k  thermal conductivity [Wm~'K™']
L
n
P

ij

reference length [m]
number of observations
model parameter
g*” heat flux [Wm™?
g.; reference heat flux [W m~2]
¢" dimensionless heat flux, g*"/qpr
r  number of future time steps
s number of sensors
S sum of squares of deviations
t*  time [s]

NOMENCLATURE

t  dimensionless time, ¢*a/L?

T* temperature [K]

Ty thermocouple bead temperature [K]

T+ thermocouple environment temperature

(K]
T  dimensionless temperature,
(T* = Ter)/§rer(L 1K)

Vv volume [m?]

w;; weighting factor (equation (9))
x* distance coordinate [m]

x dimensionless distance, x*/L
¥  model-computed value of y

y:  experimentally observed value of y.

Greek symbols
a  material thermal diffusivity [m*s~']
p  thermocouple bead density (kg m™°)
t*  time constant [s]
T dimensionless time constant, T+ x/L2

the non-linear estimation procedures in the algorithm.
In this way, extensions to higher dnmensxons or
inclusion of effects such as solidification can be made
by modifying only the thermal model. A general
description of the current IHC algorithm will be given,
followed by a validation of the implementation’s
method.

2.1. Description of the algorithm

The thermal model employed in the current IHC
algorithm is restricted to one-dimensional Cartesian
systems with constant thermal properties. The govern-

ing differential equation for such a system is
1T+  9°T*
a ot Ox*?

M

subject to the boundary conditions

a +

q*"(0,17) = —ka ¥ lo =S (2a)
a +

gL 17) = —k o +' =f1(7) (2b)

and the initial condition
T (x™,0) =f3(x"). 3)

These relations can be cast into non-dimensional
form by defining the following dimensionless par-
ameters:

t=t*a/L?, x=x"/L
§" =9 §er, T= (T" =T /Gec(Lik). ()

Then equations (1)—(3) become

oT _a'T
e ©)
§'0,0 = - ——‘ =T gre =£1(8)  (62)
¢,n= - —l =S10") G =f2(D)  (6b)
T(x,0) = (f3 (x™) = Twer)/gres( LK) = f3(x). (7)

In the THC algorithm, the initial condition f;(x) in
equation (7), which is often a constant value, must be
known a priori. However, determination of the heat
flux boundary conditions at one or both ends of the
domain (equation (6)) is the objective of the ITHC
method. One or both of these fluxes can be obtained
by the current algorithm, if sufficient data are avail-
able. This will be discussed below in detail.

In order to provide the predictions of the unknown
heat flux, a non-linear estimation method is necessary.
The method incorporated in the current algorithm is
an iterative least-squares differential correction algo-
rithm [11, 12]. The objective function for the mini-
mization is the sum of the squares of the difference
between a model-produced estimate y and its cor-
responding measured value resulting from a physical
experiment j. That is, a system model is available
which yields estimates of the measured values given
current values of the unknown parameters

P, t). ®)

Here the P’s represent the unknown parameters in the
systern model. The objective function to be minimized
can be expressed as

y1=F(P|,P2,---s
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S= _ZI ‘Zl (ﬁi—};i)wij(ﬁj ‘.}71) 9
j=ti=
where n corresponds to the number of measurements
that are to be matched. Also, w;; is a weighting factor
which becomes necessary when parameters to be esti-
mated have different statistical variance.

It should be noted that, in order to minimize equa-
tion (9) with respect to the unknown parameters, the
sensitivity matrix embodying the dependence of the
system model on the unknown parameters must be
determined. This sensitivity matrix is the set of first
derivatives of the system model with respect to the
unknown parameters. In the non-linear estimation
algorithm employed here, this is not done explicitly.
Rather, the evaluation of the partial derivatives is
performed numerically. Thus, the sensitivity co-
efficients are computed from a central difference
approximation as

F(Py,...,P,4+06P,..., P, 1)
oo O —F(P,,...,P;j=3P;,...,P,.1))
vTep T 2P, ’

J

(>3]

(o3

(10

The minimization algorithm used in the current
THC method is perfectly general in that any model
may be used to produce the estimates. Thé”syStem
model can be any combination of mathematical oper-
ations required to produce estimates of the measured
values. The required sensitivity matrix is computed
numerically and the potential complexity of the sys-
tem model itself poses no limitation on the class of
thermal models which may be analyzed.

In the specific case of the estimation of unknown
surface heat fluxes, the system model is the differential
equation (5) and the unknown parameters are the
heat fluxes in equation (6). The measurements , in
equation (9) become the discrete thermocouple read-
ings T,. This problem is, however, significantly differ-
ent from the classical parameter estimation problem,
since the ‘parameters’ to be estimated are functions of
time. This is what Beck er al. [9, 10], call function
estimation. This can be handled in the context of the
current estimation procedure in at least three ways (p.
37 of ref. [10]): (1) consider each time step a new
problem with no knowledge of the future, (2) consider
each time step a new problem, but realize knowledge
of a few future time steps, or (3) consider the whole
time domain. The first of these is the classic method
of Stoltz, which suffers from numerical instability for
small time steps. The last option is computationally
inefficient, requiring rather large computer memory
to solve a modest problem. The second approach is
the one implemented in the current THC algorithm
and is essentially the sequential function specification
method espoused by Beck [5, 10].

To apply the IHC method, the partial differential
equation (5) must be discretized into an algebraic
form. This discretization may be done in many ways
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(finite difference, finite volume, finite element,
implicit, explicit, Crank-Nicolson, Galerkin, etc.) but
may be represented algebraically as a matrix equation

ANT™ ) = BT} +{¢') Q)

where the superscript ‘i’ is the current time 7, *i+1" is
the next time 1;, ,, and the superscript j° may be either
', i+ 17, or ‘i+1{ according to whether explicit,
implicit, or Crank-Nicolson time discretization is
employed. The vector {¢’} contains the unknown heat
fluxes, and for a one-dimensional analysis can contain
at most two values.

In the current IHC thermal model, a finite volume
spatial discretization is employed, and a fully implicit
time discretization is used. The implicit form of the
temporal discretization was found by experience to be
less sensitive to numerical instability (see Section 2.2
below). Thus, in equation (11), the matrix [4] has a
tridiagonal form. [B} is a diagonal matrix, and the
index 4’ is equal to *i+1".

The spatial domain must be subdivided to compute
the temperature distribution at each time step. The
spatial domain may, if desired, be subdivided into
nodes of unequal volume, although equal increments
are normally chosen. The number of computation
points is arbitrary, but must be chosen such that a
smooth and reasonable spatial temperature variation
results. The only strict requirement is that the actual
location of the sensor(s) used must correspond exactly
to the location of the analogous computational node.

In the sequential function specification procedure,
a functional form for the temporal variation in surface
heat flux is assumed. The current IHC implementation
follows the choice by Beck et al. [10] of the simplest
possible function, the constant function. That is, over
each computational time interval Ar. the surface heat
flux ¢/ is assumed to remain constant. Then, that
constant value of ¢’ is temporarily assumed to remain
constant over the next r future time steps. Future
time steps are included in the procedure to provide a
stabilizing effect on the predictions (p. 125 of ref. [10]).
The value of r is also an input variable into the [HC
algorithm and is easily changed. The number of
measurements to be ‘matched’ in the sense of equation
(9) is n=rxs, where s is the number of sensors
employed.

Use of multiple sensors is recommended by Beck
(pp. 230-232 of ref. [10]). However, difficulties arise
with multiple sensors in a one-dimensional problem
estimating a single heat flux. This is because the
unknown heat flux will have the highest sensitivity to
the sensor closest to that surface. This will require the
use of a weighting scheme, so that data from those
sensors more remote from the surface will be heeded.

On the other hand, if heat fluxes on borh ends of a
one-dimensional domain are to be estimated. at least
two sensors must be employed (one corresponding to
each surface). Otherwise, an infinite combination of
heat fluxes at the two surfaces could account for the
change in temperature of the single sensor. What
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FiG. 1. Triangular heat flux.

results is the flux at the surface which is closest to the
sensor will have the highest sensitivity to the measure-
ment. Consequently, that flux will be estimated, and
the second surface will be estimated as adiabatic. Cor-
rect estimates for the two unknown fluxes will not be
obtained.

The current IHC has been verified by comparison
to the triangular heat flux test case presented in ref.
[10]. The results of this verification are presented in
the following section.

2.2. Algorithm verification

In order to demonstrate the soundness of the cur-
rent method, it is applied to an academic case pre-
sented by Beck er al. (p. 169 of ref. [10]). The case
involves the imposition of a triangular heat flux on
one end of a domain while the other end remains
insulated. The triangular heat flux is depicted in
Fig. 1.

Calculations are performed in dimensionless form.
Data were generated for a sensor located at the insu-
lated boundary at x¥ = L (x = 1). The time interval
between the data points was 0.015 (dimensionless
time). This temperature history was then input into
the THC algorithm to obtain the estimate of the heat
flux history at the surface.

The results of the IHC prediction are shown in Fig.
2 using 7 = 4 future time steps per estimate. These
results were obtained using the implicit time dis-
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cretization as described in the previous section. For
comparison, the results of the IHC algorithm using a
Crank-Nicolson time discretization are shown in Fig.
3. These results were also obtained using r = 4 future
time steps per estimate. For both estimations, the time
step for the simulation in the thermal portion of the
THC algorithm was identical to the time step in the
data (0.015). Notice that, although the results from
the implicit formulation in Fig. 2 are not completely
smooth, the corresponding results from use of the
Crank-Nicolson discretization in Fig. 3 are highly
erratic once the time rate of change of the heat flux
dq"/d: has reversed sign. For this reason, the fully
implicit formulation was embraced and adopted for
all subsequent computations.

The lack of smoothness in the results of Fig. 2 was
not satisfactory. Hence subsequent re-estimates were
made to determine the number of future time steps
required to yield a smooth result. The IHC algorithm
was re-executed using values of r = 6 and 8 future
time steps. The results for r = 6 (not shown} still have
a small amount of oscillation in the results after the
change in sign of the heat flux time derivative.
However, the results for r =8 future time steps,
shown in Fig. 4, shows that the results for this case
are satisfactorily smooth. The time step again equalled
that of the data (0.015), however, in Fig. 4 and in
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Table 1. Calculated heat fluxes at certain times for the tri-
angular heat flux example using the function specification
method

r=28 r=4
t Exact Current method (ref. [10])

0.15 0.15 0.141 —
0.51 0.51 0.502 0.5038
0.57 0.57 0.559 0.5347
0.60 0.60 0.578 —
0.63 0.57 0.578 0.5327
0.69 0.51 0.533 0.5018
1.05 0.15 0.157 _—

subsequent figures not all computational points are
indicated with symbols.

Table 1 shows a comparison of a few specific data
points from the estimation procedure to the cor-
responding exact values. Also shown in Table 1 are
the values reported in ref. [10] (Table 5.5, p. 183) for
their estimates for this case. The comparison of the
quality of the results from the current method to those
from ref. [10] is highly favorable.

3. THERMOCOUPLE SENSOR DYNAMICS

As mentioned previously, two major factors require
that a thermocouple sensor’s indicated tenfpefature
lag behind the actual temperature the sensor is
attempting to indicate. These factors are (1) contact
resistance between the sensor and the body and (2)
the thermal mass of the thermocouple junction. In
this section a brief description of the simplest ther-
mocouple sensor model will be given, along with a
demonstration of this model’s effect on the indicated
temperature.

3.1. The simplest model

The simplest model for a thermocouple involves
incorporation of the two factors mentioned above—
contact resistance and thermal mass. Such a model
neglects other possibly important factors such as heat
loss and temperature gradients along the leads.

The thermocouple model is shown in Fig. 5. The
thermal resistance is depicted as Ry, = 1/hA4, where his
the heat transfer coefficient between the thermocouple
bead and the surrounding medium and A the surface
area of the bead. In situations of interest in the present
investigation, this & would rot be a convection
coefficient but would represent the effect of an air gap

FiG. 5. Thermocouple model and parameters.
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or some otherwise imperfect thermal contact between
the thermocouple and the surrounding solid medium.
The assumptions of a homogeneous thermocouple
bead with constant thermal properties and uniform
contact resistance are made. With the further assump-
tion of negligible internal temperature gradients
within the bead, an energy balance leads to the differ-
ential equation governing the temperature of the bead
as a function of time as
dT¢  q* hA

dt*  pe,  peV

(T30 =T3)
= T3)-T) ()

which is subject to the initial condition

TH(0) = T3, (13)
In dimensionless form these equations become
d7, 1
—_ = - 14
i = T=(0-Tv) 14
and
Ty(0) = (T3 — T drec(LIK) = Ty (15)

The two factors controlling the thermocouple’s
response are seen to combine as a ratio into a single
parameter t*. This parameter is often referred to as
the time constant and has units of time (s). Two
important observations regarding the nature of equa-
tion (14) are (1) the equation is intractable at present
since the temperature of the surrounding medium
T.(9 is an unspecified function of time and (2) the
parameter t, although assumed constant in this
formulation, may in fact change with time and/or
temperature.

3.2, Effect of t on sensor temperature

A solution for the thermocouple’s response can be
computed if the temperature history of the sur-
rounding medium 7 (¢) in equation (14) is known. A
parametric investigation was undertaken to determine
the effect of the time constant t on the sensor’s indi-
cated temperature.

A one-dimensional domain insulated at x* =L
(x =1) was simulated numerically using the tri-
angular heat flux shown in Fig. 1 as the boundary
condition at x* = 0 (x = 0). A thermocouple located
atx = 1 was simulated by including the sensor dynam-
ics depicted by equation (14) and using the value of
the temperature of the body at x =1 as the time
varying T . The temperature of the body was deter-
mined from a Crank-Nicolson numerical procedure.
The temperature of the sensor was determined at each
time step using a fully implicit numerical differencing
scheme.
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Figure 6 shows the result of the computations. In
the figure, the case 7 = 0 corresponds to the case
of no effect of sensor dynamics (perfect thermal con-
tact or zero sensor heat capacity) and is thus the
true temperature of the body. As the time constant is
increased, the sensor lags progressively behind the
true temperature.

These computed thermocouple responses were
saved for input into the [HC algorithm to determine
the effect of = on the predicted surface heat flux. The
results of this exercise, being the primary purpose of
this paper, are presented in the next section.

4. EFFECT OF THERMOCOUPLE DYNAMICS
ON IHC PREDICTIONS

To determine the effect of the thermocouple sensor
dynamics on the IHC predictions, the results of the
previous section’s simulation of a sensor located at
x* =L were analyzed using the IHC algorithm
described previously. The IHC analysis provides esti-
mates of both the surface temperature and the surface
heat flux. These results will be presented, followed by
a study of the effect of the rate of heat flux change
dg”/dt on the IHC predictions.

4.1. Surface temperature

The results of the IHC prediction of surface tem-
perature for several different values of t are shown in
Fig. 7. Also shown in the figure are the actual values
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of surface temperature produced from the Crank-
Nicolson simulation. The case of t = 0, corresponding
to the case of no sensor dynamics or perfect readings,
is seen to be faithfully reproduced by the IHC results
in Fig. 7.

As expected, increasing the parameter 7 results in
increasing error in the estimated surface temperatures.
The nature of this error is a combination of a pro-
gressing shift in time of the response and a damping
in the magnitude. These factors result from the cum-
mulative effects of the lagging sensor response. When
the time constant is degraded to r = 0.25, the IHC
algorithm fails to predict the ‘overshoot’ in the surface
temperature resulting from the triangular heat flux in
Fig. 1.

4.2. Surface heat flux

The primary function of the IHC analysis is to
estimate the surface heat flux based on the internal
sensor temperature. The results of the IHC pre-
dictions of surface heat flux for several different sensor
time constants 7 are shown in Fig. 8. Again, the case
of t =0 corresponds to the estimate for a perfect
sensor, and its error (depicted in Fig. 4) is indicative
of the amount of error inherent in the IHC algorithm.

In Fig. 8, increasing values of 7 produce increased
damping and lagging of the surface heat flux predic-
tions. This is analogous to damping and lagging of
the predictions of surface temperature presented
above. The lagging of the occurrence of the peak in
the curve is seen to correspond approximately to the
value of the time constant for the sensor. The mag-
nitude of the peak flux predicted by the IHC degrades
rapidly with the sensor’s time constant 7.

4.3. Effect of rate of change of heat flux on the IHC
predictions

The previous sections have considered the effects of
using progressively inferior thermocouples to measure
the temperature of a slab subjected to an identical
heat flux history. In this section, the more physically
realistic case is considered, that being a study of the
effect of progressively steeper heat flux gradients
dqg”/dt on a thermocouple with a fixed time constant.

To achieve this comparison, a thermocouple with a
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fixed parameter of T = 0.10 was selected. Such a ther-
mocouple has a noticeable, but not catastrophic, effect
on the THC predictions seen in Figs. 7 and 8. The
thermocouple’s response was simulated, as described
previously, being excited by a triangular heat flux
similar to that in Fig. 1. On each successive simulation,
the time at which the heat flux reaches its maximum
value (Quma. = 0.6) was decreased until, for the last
case, 1{(Qu..) = 0.0 which corresponds to an instan-
taneous change in surface heat flux.

The results of the IHC predictions of surface heat
flux are shown in Fig. 9. For all six cases shown the
time at which the heat flux began increasing was s fixed
at ¢ = 0, and the time at which the heat flux returned
to zero was fixed at ¢ = 1.2. The magnitude of the
maximum heat flux was constant at Q... = 0.6. As
the time at which Q,,, is reached is decreased, the
rate of increase of the heat flux, dg”/d¢, increases.
Initially, when #(Q.,) = 0.60,d4"/d¢ = 1.0, and when
1(Qmay) 1s decreased to zero, d¢”/dt becomes infinite.

In Fig. 9, it is seen that as the rate d4”/d¢ increases,
the heat flux predicted by the IHC algorithm is dimin-
ished in magnitude and delayed in time. The amount
of the effect seen in Fig. 9 which is due to the ther-
mocouple sensor dynamics can be ascertained by com-
parison with the results of the same analysis with a
perfect temperature sensor. The results of this analysis
are seen in Fig. 10. In this case, as d4”/d¢ increases, the
peak values of the heat flux are actually overestimated,
due to the inclusion of the future data information in
the estimation procedure. Also, the time of occurrence
of the peak values is closer to the actual value, but
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still is biased due to the inclusion of future time step
information in the IHC prediction. Lastly, as the heat
flux decreases from its maximum value, an irregularity
in the shape of the triangle becomes apparent as d4"/d¢
is increased.

The essential details of Figs. 9 and 10 are tabulated
in Table 2. There a comparison of the magnitude
(Omax) and time of occurrence (#(Qna.)) of the
maximum heat flux for the perfect and imperfect ther-
mocouple sensors is made. As dg”/dt increases, the
error in the predicted time of occurrence increases for
both cases. In the perfect sensor case, this error is
indicative of the inherent error in the ITHC algorithm
for the combination of the number of future time steps
used (r = 8) and the time step in the data (Ar = 0.015).
In the imperfect sensor, the error in the predicted time
of occurrence is increased beyond that for the perfect
sensor in all but the first case. The predicted mag-
nitude of the maximum heat flux Q... actually
increases with increasing d4”/dr for the perfect sensor
case, due to the use of future time step information.
In the case of the imperfect sensor, the predicted mag-
nitude of Q... is steadily deteriorated with increasing
dg”/de.

5. PROSCRIPTION FOR COMPENSATION OF
THE IHC ALGORITHM FOR
THERMOCOUPLE DYNAMICS

The deterministic effects of thermocouple sensor
dynamics on predictions by IHC methodology were

Table 2. Comparison of IHC predictions for increasing heat flux gradients for perfect
(t = 0.0) and imperfect (z = 0.10) sensors

Actual =00 t=0.10

d‘i”/df Qmax [(Qmax) Qm.u '(Qmu) Qmu '(Qmax)
1.0 0.60 0.60 0.5798 0.615 0.5278 0.615
2.0 0.60 0.30 0.5876 0.345 0.5108 0.435
4.0 0.60 0.15 0.6027 0.210 0.4941 0.330
6.0 0.60 0.10 0.6112 0.165 0.4872 0.300
12.0 0.60 0.05 0.6144 0.135 0.4800 0.270
€ 0.60 0.00 0.6084 0.105 0.4716 0.255
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demonstrated in the previous section. It would be
highly desirable, if possible, to account for the sensor’s
dynamics in the ITHC method.

This can be done if the thermocouple can be
modeled as the simplest case presented, i.e. the ther-
mocouple’s dynamics can be characterized by a single
value 7. If the value of 7 is known a priori, and is truly
constant, then it is a trivial matter to include in the
thermal model of the IHC algorithm a separate mod-
ule to reflect this.

However, in the more general case, a suitable value
of ris not known. As mentioned before, this parameter
depends on the in situ characteristics of the ther-
mocouple bead and its contact condition with the
surrounding body. The value of 7 may even change
during the experiment under consideration, owing to
the (possibly) changing contact condition.

If the value of 7 is not known, it can, under certain
conditions, be estimated in parallel with the surface
heat flux. This will require inclusion of the thermo-
couple dynamics in the [HC thermal model, leaving
7 as an unknown function of time. The algorithm
will now require more data, however, as the data from
a single sensor will not be sufficient to determine two
parameters at each time step. This would be analogous
to the case mentioned earlier of attempting to deter-
mine the heat flux from two surfaces using data from
a single sensor. The internally computetl sénsitivity
coefficients will be competing for information from a
single sensor’s data. The parameter which is most
dependent on the measured temperature will prevail,
and the other parameter will be estimated as zero. If
data from a second sensor is available, and it can be
assumed that the two sensors have similar dynamics,
then the algorithm can be modified to predict both
the unknown surface heat flux and the unknown value
of 7.

6. CONCLUSIONS

The effect of thermocouple sensor dynamics on pre-
dictions from JHC methods has been demonstrated.
As one would expect, the ‘slower’ the sensor is, the
poorer will be the results of the IHC method. The
effect of increasing heat flux gradient d4”/dr on the

K. A. WoODBURY

IHC predictions from an imperfect sensor have also
been illustrated. With a sensor of non-zero 1, as dg”/d:t
is increased, the times of occurrence and magnitudes
of the peak values of heat fluxes are delayed and
diminished.
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EFFET DE LA DYNAMIQUE D'UN CAPTEUR THERMOCOUPLE SUR LA
PREDICTION DU FLUX THERMIQUE OBTENUE PAR LA METHODE INVERSE

Résumé—Un modéle simple de thermocouple est utilisé pour simuler histoire successive 3 I'imposition,

sur un domaine monodimensionnel, d’un flux thermique variant en triangle. Un programme d'informatique

d’analyse inverse de conduction thermique est développé pour estimer I'évolution du flux aprés cette

imposition, Les résultats montrent que I'effet de la constante du thermocouple est de diminuer l'intensité
du flux estimé et de décaler sa distribution dans le temps.



Effect of thermocouple sensor dynamics on surface heat flux predictions

DER EINFLUSS DES DYNAMISCHEN VERHALTENS VON THERMOELEMENTEN
AUF DIE ERMITTLUNG DER OBERFLACHENWARMESTROMDICHTE DURCH
DIE ANALYSE DER INVERSEN WARMELEITUNG

Zusammenfassung—In dieser Arbeit wird ein einfaches Modell eines Thermoelementes verwendet, um in

einem eindimensionalen Gebiet die zeitliche Entwicklung der Wirmestrome zu berechnen. Es wird ein

allgemeingiiltiges Rechenprogramm fiir die inverse Wirmeleitung entwickelt und dazu verwendet, aufgrund

der generierten Daten die zeitliche Entwicklung des Wirmestroms zu berechnen. Die Ergebnisse zeigen,

daB infolge der Zeitkonstanten des Thermoelementes die Wirmestrome betragsmiBig zu klein und im
ibrigen zeitversetzt berechnet werden.

BIUAHHE JUHAMUUYECKON XAPAKTEPUCTHKH TEPMOIIAPbl HA ONPEXEJIEHUE
TEIUIOBOI'Q [MOTOKA HA NMOBEPXHOCTH C UCNTOJIb3OBAHHEM METO1OB
PEMEHUWUA OBPATHBIX 3AJAY TEIUIOMPOBOAHOCTHU

Ammoramms—Hcnomayercs npocras Moneh TEpMONApH VIR NONYYCHAR JAHHLIX OYTEM MOACIAHPOBA-

HHSR HANIOXECHHA HA OJHOMEPHYIO 06JaCTh TEIUIOBOro NOTOKA, PACHPEAC/ICHHOTO BO BPEMEHH 1O TPEyro-

JpHOH cxeme. I8 BOCCTAHOBJCHEN TCIUIOBOrO NOTOKA MO Pe3yIbTaTaM H3MepeHHs pailpaboTana

OpOTrPaMMa YHCICHHOTO CY€Ta, OCHOBAHHAR HA PellcHHHM OSPAaTHRIX 32429 TENIONPOBOTHOCTH. UHCICH-

HBIl 3XCOCPHMCHT NOKA3BIBALT, YTO BIMAHAE NOCTOSHROA BPEMCHH 3aKJI02ACTCA B CTAIaXHBAHMHA H CMC-
LICHHH BEJTHIMHB TCIUIOBOro MOTOKA BO BPEMCHH.



